

ΝΟνΑ

NuMI Off-axis v_e Appearance Experiment

Karol Lang University of Texas at Austin

For the NOvA Collaboration

XII International Workshop on "Neutrino Telescopes"

March 6-9, 2007
"Istituto Veneto di Scienze, Lettere ed Arti", Palazzo Franchetti - Campo S. Stefano Venice

Outline

□ NOvA physics

- $\nu_{\mu} \rightarrow \nu_{e}$
- mass hierarchy
- **CP** violation
- $\bullet \quad \nu_{\mu} \rightarrow \nu_{\mu}$
- □ Experimental strategy
- □ Accelerator & Beam
 - current status
 - future upgrades
- ☐ Far and Near NOvA detectors
 - technology
 - update on R&D
- ☐ Summary & Outlook

Technical Design Report (TDR) being finalized. All plots will be soon updated.

©FERMILAB #98-1321D

NuMI at Fermilab and Minnesota

Sub-dominant mixing & CP-violating phase

Pontecorvo - Maki - Nakagawa - Sakata (PMNS) matrix

$$\left|v_{\ell}\right\rangle = \sum U_{\ell m} \left|v_{m}\right\rangle$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & C_{23} & S_{23} \\ 0 & -S_{23} & C_{23} \end{pmatrix} \begin{pmatrix} \mathbf{c_{13}} & \mathbf{0} & \mathbf{s_{13}} e^{-i\delta} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -\mathbf{s_{13}} e^{i\delta} & \mathbf{0} & \mathbf{c_{13}} \end{pmatrix} \begin{pmatrix} C_{12} & S_{12} & 0 \\ -S_{12} & C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric
$$V_{\mu} \rightarrow V_{\tau}$$

Atmospheric
$$v_e \rightarrow v_u, v_\tau$$

Solar

$$C_{ij} = \sin \theta_{ij}$$

 $S_{ij} = \cos \theta_{ij}$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Mass hierarchy via oscillations in matter

In matter at oscillation maximum

$$P_{matter}(v_{\mu} \rightarrow v_{e}) = \left(1 \pm 2 \frac{E}{E_{R}}\right) P_{vacuum}(v_{\mu} \rightarrow v_{e})$$

- + for neutrinos with normal mass hierarchy and anti-neutrinos with
 - inverted mass hierarchy
- vice versa
- About a +/- 30% for NuMI to Ash River

$$P_{vacuum}(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\Delta_{atm} = 2.5\% \left(\frac{\sin^{2}2\theta_{13}}{0.05}\right)$$

$$E_R = \frac{\Delta m_{32}^2}{2\sqrt{2}G_F N_e} \approx 11 GeV$$

$$E_{1st \, \text{max}} = 1.64 \, \text{GeV} \left(\frac{\Delta m_{32}^2}{2.5 \times 10^{-3} \, \text{eV}^2} \right) \left(\frac{L}{810 \, \text{km}} \right) \qquad \Delta_{atm} \approx 1.27 \left(\frac{\Delta m_{32}^2 (\text{eV}^2) L(\text{km})}{E(\text{GeV})} \right)$$

$$\Delta_{atm} \approx 1.27 \left(\frac{\Delta m_{32}^2 (eV^2) L(km)}{E(GeV)} \right)$$

$\sin^2 2\theta_{13}$ versus mass hierarchy

- Ambiguities
- □ Other measurements helpful (e.g., T2K)

<P $(\nu_{\mu}$ -> $\nu_{\rm e})>$ %

<P(ν_{μ} -> ν_{e})> %

Ambiguities versus

$P(v_{\mu} \rightarrow v_{e})$

 $\sin^2(2\theta_{13})$

60.3x10²⁰ pot

All ∨ runniing

 $\Delta m^2 > 0$

 $\Delta m^2 < 0$

0.4

0.2

0

δ (π)

3 σ Sensitivity to $\theta_{13} \neq 0$

0.4

0.2

0

 $30.2x10^{20}$ pot

- $\Delta m^2 > 0$

 $-\Delta m^2 < 0$

10 -2

for each v and \bar{v}

 $\sin^2(2\theta_{13}^{10})$

sin²(20₁₃)

Resolution of the mass hierarchy

The strategy: off-axis NuMI beam

- □ Fermilab Ash River
- ☐ 14 mrad off-axis
- 810 km baseline

Hibbing

Eveleth 100

Experimental setup: the Main Injector now

(Main Injector = MI)

MI is fed 1.56 μs batches from 8 GeV Booster

(MI ramp time ~1.5sec)

■ NuMI designed for

- 9.6 μsec single turn extraction
- 4 x 10¹³ppp @ 120 GeV
- 1.9 second cycle time
- beam power 400kW

☐ Typical performance to date:

- 2.4 × 10¹³ ppp @ 120 GeV
- 2.2-2.4 second cycle time

Achieved records:

- 4.05 ×10¹³ ppp @ 120 GeV (Feb 22, 2007)
 - 2.0 second cycle time
 - 315 kW

Experimental setup: NuMI beam

NuMI - multi-beam

Proton Improvement Plan

■ More protons with Collider (<2009)</p>

- 9/11 slip-stacked Booster Batches (2 batches for anti-protons)
- ◆ Repetition rate = 0.8 s (Booster) + 1.4 s (MI ramp) = 2.2 s
- ♦ 3.4 x 10 ²⁰ protons/year

□ Post-Collider era w/ Recycler (2010-2011)

(Accelerator and NUml Upgrade [ANU])

- 12 batches
- use Recycler for slip stacking (1.33 s cycle)
- ♦ 6 x 10 ²⁰ protons/year

□ Post-Collider era w/ Accumulator (>2012)

- Use Accumulator (for momentum stacking)
- ♦ 10 x 10 ²⁰ protons/year

Very recent progress

□ 4.05 x 10¹³ ppp slip-stacked in 11 batches (on Feb 22, 2007)

Operating Scenarios

	Present operating conditions *	Proton Plan Multi-batch slip-stacking in MI *	NOvA ANU Multi -batch slip -stacking in Recycler	Proposed SNuMI Accumulator momentum stacking
Booster intensity (p/batch)	4.5_10 ¹²	4.3_10 ¹²	4.3_1012	4.7_10 ¹²
No. Booster batches to NuMI	5	9	12	18
MI cycle time (s)	2	2.2	1.333	1.333
MI intensity (ppp)	3.1_10 ¹³	4.5_10 ¹³	4.9_10 ¹³	8.3_10 ¹³
To NuMI (ppp)	2.25_10 ¹³	3.7_10 ¹³	4.9_10 ¹³	8.3_10 ¹³
NuMI beam power (kW)	210	320	700	1200
POT/yr to NuMI	2_10 ²⁰	3_10 ²⁰	6_10 ²⁰	10_10 20
MI protons/hr	5.5_10 ¹⁶	7.3_10 ¹⁶	1.3_10 ¹⁷	2.2_1017

^{*} NuMI values are given for mixed-mode cycles

NOvA Far Detector we would like to build

- □ TAD = Totally Active Detector PVC = passive material
- mass N kT (N large) ~80% scintillator ~20% PVC extrusions
- Modular structure32 cells/extrusion12 extrusions/plane1984 planes
- Cell dimensions:
 - 3.9 cm x 6 cm x 15.7m
- U-shaped 0.7 mm WLS fiber into APD
- \Box X ₀ = 44 cm ρ _M = 10 cm

0000

Detector technology

- □Liquid scintillator
 - filled cells.
- **□WLS** fiber
 - 0.7 mm diameter
 - looped end ("perfect" reflector)
 - readout both ends on one side

■Avalanche Photodiode

- Hamamatsu multi-pixel
- -85% QE

Scintillator, light yield

■ NOvA recipe

Equivalent to Saint-Gobain (Bicron) BC-517P or Eljen Technology EJ-321P

☐ Requirement: 20PE's for a MIP at far extrusion-end

Component	Purpose	Mass fraction
mineral oil	solvent	94.4%
pseudocumene	scintillant	5.5%
PPO	waveshifter #1	0.1%
bis-MSB	waveshifter #2	0.002%
Stadis-425	anti-static agent	0.0003%
tocopherol	anti-oxidant	0.0010%
TOTAL		100%

Structural challenges

31-plane block

☐ FEA calculations and tests (on-going)

Event classification

- ☐ Longitudinal sampling every 0.15 X0
- **□ 2 GeV muon traverses ~60 planes**

Electron ID and Resolution

Average pulse height per plane

Electron energy resolution

Near Detector

- \square 2000 ν_e CC events per year
- ☐ 20 tons fiducial volume
 - ♦ 1.65 x 2.85 x 7.4 m³

Near Detector in the beam(s)

MT6 Test Beam User Areas

M Test

NuMI Access Tunnel (100 m underground)

Near Detector in MINOS Surface Building

6.5 x 10²⁰ pot in 75 mrad off-axis beam

Near Detector in the NuMI Access Tunnel

For 6.5 10²⁰ pot

Sensitivity to a Galactic Supernova

Summary and outlook

□ NOvA will address central neutrino physics issues

- Subdominant mixing $\sin^2(2\theta_{13})$ to about 1-2%
- Neutrino mass hierarchy
- ◆ CP violation (δ in PMNS matrix)
- measure sin²(2θ₃₂) to about 1-2%

□ Robust and straightforward detector design

- In-house scintillator
- Long WLS fibers readout by APD's
- Modular (early start of data collection)

□ Accelerator & NuMI Upgrade

- 700 kW by 2009
- 1200 kW after 2012

□ Near term

- NOvA in FY08 budget @ \$36M
- ◆ TDR
- prototype detector

3 σ Sensitivity to $\theta_{13} \neq 0$

1.65 GeV $v_e N \rightarrow e p \pi^0$

2.11 GeV $\nu_{\mu}N \rightarrow \nu_{\mu}p\pi^{0}$ x-z View

Ambiguities versus ∆m²₂₃

Resolution of the θ_{23} ambiguity

(There is some sensitivity to the mass ordering and δ . The blue line represents an average over these parameters.)

δ reach

NOvA + T2K (to be updated)

NOvA with T2K Phase 1

NOvA/PD with T2K Phase 2

95% CL Resolution of the Mass Ordering

Resolution of the mass hierarchy (with T2K)

☐ To be updated

NOVA ANU possible Timeline

- 2008 shutdown: GPP Civil Work started for penetrations and overall GPP work completed in January 2009
- ☐ Fall 2009 TeV shutdown starts (assume)
 - Most likely accelerator installation not ready to start until Spring 2010 (low level of funding in FY08 delays completion of ANU work required before this shutdown)
 - ◆ To complete accelerator upgrades, need ~6-8 month shutdown
- ☐ Fall 2010: Start up and commission recycler with protons (400kW)
- ☐ 1 year of running with NuMI LE target for MINERvA
- □ Fall 2011 shutdown: complete NuMI Target Hall work for 700kW power and change to ME neutrino beam configuration
- January 2012: <u>Start up and commission recycler (700kW)</u>
- □ During 2011: NOvA 5kT detector ready